Simultaneous existence of a multiplicity of stable and unstable solitons in dissipative systems

نویسندگان

  • J. M. Soto-Crespo
  • Nail Akhmediev
  • Kin S. Chiang
چکیده

We show that dissipative systems can have a multiplicity of stationary solutions in the form of both stable and unstable solitons. As a model equation, we use the complex cubic–quintic Ginzburg–Landau equation. For a given set of the equation parameters, this equation has many coexisting soliton solutions. Our stability results show that although most of them are unstable, they can have stable pieces. This partial stability leads to the phenomenon of soliton explosion.  2001 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the trunca...

متن کامل

Numerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC

PT-Symmetry is one of the interesting topics in quantum mechanics and optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the nonlinear directional coupler (NLDC). In the paper we numerically investigate the stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering gain in bar and loss in cross. By using the analytical solutions of pertu...

متن کامل

Solitons in a medium with linear dissipation and localized gain.

We present a variety of dissipative solitons and breathing modes in a medium with localized gain and homogeneous linear dissipation. The system possesses a number of unusual properties, like exponentially localized modes in both focusing and defocusing media, existence of modes in focusing media at negative propagation constant values, simultaneous existence of stable symmetric and antisymmetri...

متن کامل

Creeping solitons in dissipative systems and their bifurcations.

We present a detailed numerical study of creeping solitons in dissipative systems. A bifurcation diagram has been constructed for the region of transition between solitons and fronts. It shows a rich variety of transitions between various types of localized solutions. For the first time, we have found a sequence of period-doubling bifurcations of creeping solitons, and also a symmetry-breaking ...

متن کامل

Effect of Relative Phase on the Stability of Temporal Bright Solitons in a PT- Symmetric NLDC

In this paper we numerically investigate the effect of relative phase on thestability of temporal bright solitons in a Nano PT- Symmetric nonlinear directionalcoupler (NLDC) by considering gain in bar and loss in cross. We also study the effect ofrelative phase on the output perturbed bright solitons energies, in the range of   0 to 180 . By using perturbation theory three eigenfunctions an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001